2016 Air Quality Annual Status Report (ASR) In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management October 2016 | Local Authority Officer | Sue Kennedy | |-------------------------|--| | Department | Environmental Protection | | Address | Swale House East Street Sittingbourne ME10 3HT | | Telephone | 01622 602873 | | E-mail | sue.kennedy@midkent.gov.uk | | Report Reference number | ASR.AEA.SK.1 | | Date | 12.12.16 | ## **Executive Summary: Air Quality in Our Area** ### **Air Quality in Swale Borough Council** Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children and older people, and those with heart and lung conditions. There is also often a strong correlation with equalities issues, because areas with poor air quality are also often the less affluent areas^{1, 2}. Improving air quality can benefit those who may find their conditions are made worse through exposure to air pollution, for example people with heart or lung conditions. More information about the health effects of air pollution can be found at: #### http://www.kentair.org.uk/health-impacts?view=effects The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around £16 billion³. Swale Borough Council is committed to improving air quality. The main pollutant of concern is nitrogen dioxide released from motor vehicles. Swale Borough Council has a comprehensive monitoring network for nitrogen dioxide including measurement by automatic analysers at four locations and fifty seven locations with diffusion tubes. At some of the sites there are triplicate and duplicate tubes to ensure the accuracy of the monitoring data. A number of air quality management areas (AQMAs) have been declared where the air pollution has been shown to exist above permitted concentrations. These AQMAs are listed below: - Newington declared 2009 (AQMA 1) - Ospringe Street declared June 2011 (AQMA 2). Extended up to the Mount in May 2016 (AQMA 6). - St Pauls Street, Milton, Sittingbourne declared January 2013 (AQMA 3). ¹ Environmental equity, air quality, socioeconomic status and respiratory health, 2010 ² Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006 ³ Defra. Abatement cost guidance for valuing changes in air quality, May 2013 - East Street/Canterbury Road, Sittingbourne declared January 2013 (AQMA 4) - Teynham declared December 2015 (AQMA 5). Nitrogen dioxide concentrations measured at all four automatic monitoring stations were below the annual objective mean concentration in 2015. There was also no exceedance of the hourly mean objective. Exceedance of the annual objective was measured by diffusion tube at a number of locations within AQMA 1, AQMA 2 and AQMA 6⁴. The other AQMAs have one or two sites for which non exceedance results are borderline. Monitoring by both continuous analysers and diffusion tubes should continue within the AQMAs to confirm that the air quality measures and mitigation are having the required impact on air quality improvements in the Borough. Nitrogen dioxide monitoring within Sheerness will be continued to monitor the impact of expansion of Sheerness Port and the regeneration areas at Queenborough as well as the impact of increased traffic from housing developments on the Island Although PM₁₀ concentrations are not exceeding either the annual objective or the daily objective, monitoring should continue (or change to PM_{2.5} monitoring). This will help Swale Borough Council demonstrate that they are taking measures to reduce particulate matter concentrations. The Public Health Outcomes Framework (PHOF), which calculated the fraction of mortality attributed to particulate air pollution, showed that the mortality within Swale Borough Council is marginally worse than that calculated for England as a whole. #### **Actions to Improve Air Quality** In spring 2015 a summary report of the measures to improve air quality within the Borough Council area were provided to Defra (see Table 2.2 of this report). These measures were also included in the National Air Quality Plan for the achievement of EU air quality limit value for NO₂ in South East (UK 0031)⁵ ⁴ AQMA 6 is essentially an extension of AQMA 2 ⁵ https://www.gov.uk/government/collections/air-quality-plan-for-nitrogen-dioxide-no2-in-uk-2015 Since spring 2015, a number of additional measures have been undertaken and others proposed by the AQMA steering groups and other partners. These include: - The revival of a greening local community project, - Officer attendance at the Swale Green grid meetings to link our work with environmental groups meeting locally. - In 2016 a display regarding air quality in Teynham library was used to inform the local residents. This was very successful. Ideas from all of the community display and the internal and external steering groups have been put into a draft Teynham AQMA action plan ready for submission to Defra once it has been agreed by the members. - Contact has been made with external stakeholders ready for the wider consultations - The existing community steering groups were contacted to discuss the progress with their action plans. Amendments were made to the existing action plans to take account f progress with actions. - The Freight transport plan steering group meeting was held and a draft plan is ready to be submitted to Defra - In October 2013 Grant funding was obtained for 15 retrofit clean fuel buses in Swale. The proposal was to fit Selective Catalytic Reduction and economisers to the company fleet. Unfortunately money (£235,000) was subsequently returned to Department for Transport as the bus company were unable to implement the retrofit. Further work is needed to educate engage the bus companies and this has been taken forward via the quality bus partnership - Work with KCC on Swale (MKIP) smart travel challenge, Kent workplace active travel challenge, better business awards, cycling training, new travel planning website 2015 - Swale Ecostars Kent pilot 2015 was undertaken in 2015-2015. It was hoped that this might be able to expand in 2016/7 in Kent. This will depend on finance being available - Parking restrictions were agreed by the Joint Transport Board to be implemented on part of the A2 at Teynham. This could affect traffic flow improvements and reduce congestion in the AQMA - Kent Smarter travel project has continued - Healthy business awards for the promotion of healthy business practice with partners such as the KCC - KM Green Champions Schools project continued to encourage sustainable school travel - Air quality mitigation measures were obtained though planning development consultations. Conditions were suggested to Planning and Developers to protect the residents from suffering increasing levels of air pollutants and ensure the impact of the development proposals on air quality is minimised - Swale continued to promote the air quality and health project "text alert" based on Sussex-Air with Kings College London. #### **Local Priorities and Challenges** The Council cannot achieve improvements to air quality alone. In order to fulfil its goal in producing quantifiable outcomes to timescale all residents businesses and delivery partners need to take responsibility and engage constructively in the process. Contact has been made with external bodies in 2015/6 to continue work with them in 2017. #### **How to Get Involved** - Attend Public meetings- all residents and consultees invited to attend public displays to raise awareness. - Volunteer to belong to a steering group and meet annually to discuss action plans. For example, the Sittingbourne Teynham, Ospringe and Newington community steering groups have been established and are in regular email contact with Council regarding progress with actions within their plans. - Take part in a local greening community project. For example, ideas from the community display, the internal and external steering groups have been put into an AQMA action plan ready for submission in this annual status report. - Look at any displays regarding air quality. #### **Conclusions** Swale Borough Council during the coming year will: - 1. Work towards completing their Air Quality Strategy. - 2. Work with Teynham AQ Steering Group to implement actions in their plan. - 3. Work with partners in Freight Plan. - 4. Work towards expanding the Ecostars scheme. - 5. Investigate the feasibility of creating a Clean Air Zone or a low emission zone - 6. Work towards implementing the Greening Up Teynham Scheme. ## **Table of Contents** | Executive Summary: Air Qu | uality in Our Area | I | |---------------------------------------|---|--------| | Air Quality in Swale Borough | n Council | i | | Actions to Improve Air Qualit | ty | ii | | Local Priorities and Challeng | ges | iv | | How to Get Involved | | iv | | Conclusions | | v | | 1 Local Air Quality Mana | agement | 1 | | 2 Actions to Improve Ai | r Quality | 2 | | 2.1 Air Quality Managem | ent Areas | 2 | | 2.2 Progress and Impact | of Measures to address Air Quality in Swale Borough | | | Council | | 7 | | 2.3 PM _{2.5} – Local Authori | ty Approach to Reducing Emissions and or | | | Concentrations | | 17 | | 3 Air Quality Monitoring | Data and Comparison with Air Quality | | | Objectives and National Co | ompliance | 18 | | 3.1 Summary of Monitori | ng Undertaken | 18 | | | ng Sites | | | | nitoring Sites | 18 | | | by diffusion tube and whether monitoring occurs within an | | | | | | | | NO ₂) | | | , | (PM ₁₀) | | | | esults | | | | Diffusion Tube Results for 2015 | | | | echnical Information / Air Quality Monitoring | 07 | | | | 41 | | | nitoring Locations | | | | _ |
 | | Air Quality Objectives in England | | | | | | | References | Error! Bookmark not de | fined. | | List of Tables | | | | | ality Management Areas | 2 | | | asures to Improve Air Quality | | ### **List of Figures** | Figure 2-1 Air Quality Management Areas in Swale Borough Council area | 3 | |--|-----------| | Figure 2-2 Fraction of mortality attributed to particulate air pollution in Swale Borou | · | | | 17 | | Figure 3-1: Nitrogen dioxide concentrations measured at automatic monitoring | | | stations from 2011 to 2015 | 20 | | Figure 3-2 Nitrogen dioxide concentrations measured by diffusion tubes in Sheern from 2011 to 2015 | ess
21 | | Figure 3-3 Nitrogen dioxide concentrations measured by diffusion tubes in Newing | yton | | from 2011 to 2015. Area contains AQMA 1 | 21 | | Figure 3-4 Nitrogen dioxide concentrations measured by diffusion tubes in | | | Faversham and Teynham from 2011 to 2015. Area contains AQMA 2 at | nd | | AQMA 5 (SW79, SW80, SW91 and SW92) | 22 | | Figure 3-5 Nitrogen dioxide concentrations measured by diffusion tubes in | | | Sittingbourne from 2011 to 2015. Area contains AQMA 3 | 22 | | Figure 3-6 Nitrogen dioxide concentrations measured by diffusion tubes in Milton | | | from 2011 to 2015. Area contains AQMA 4. | 22 | | Figure 3-7 PM ₁₀ concentrations measured at Ospringe Road from 2011 to 2015 | 24 | | Figure 3-8 Number of exceedances of daily mean objective of 50 μg m ⁻³ at Ospring | ge | | Street since 2011 | 25 | | | | ## 1 Local Air Quality Management This report provides an overview of air quality in Swale Borough Council during 2015. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents. The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Swale Borough Council to improve air quality and any progress that has been made. The statutory air quality objectives applicable to LAQM in England can be found in Table E.1 in Appendix E. ## 2 Actions to Improve Air Quality ### 2.1 Air Quality Management Areas Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of the objectives. A summary of AQMAs declared by Swale Borough Council can be found in Table 2.1. **Table 2.1 – Declared Air Quality Management Areas** | AQMA
Name | Pollutants
and Air
Quality
Objectives | City /
Town | One Line Description | Action Plan | |--|--|----------------|---|---| | AQMA 1
Newington | NO ₂ annual mean | Newington | An area encompassing those parts of London Road and High Street, Newington where the speed limit is 30mph | 2009 to 2010 http://www.kentair.org.uk/documents/NewingtonAir_Quality_Management Area Action Plan161110_version.pdf | | AQMA 2 -
Ospringe St,
Faversham,
Kent | NO ₂ annual mean | Faversham | Area incorporating all of
Ospringe Street, Ospringe
which is a section of the A2
London Road, trunk road near
Faversham between the grid
reference 600106, 160936 and
the grid reference 600466,
160839. | To be revoked next reporting year as it has been replaced by AQMA 6 | | AQMA No 3 -
East Street,
Sittingbourne
Kent | NO ₂ annual mean | Sittingbourne | The designated area incorporates the area of East Street, Sittingbourne | To be provided next reporting year | | AQMA No 4 - St
Paul's Street,
Sittingbourne | NO ₂ annual mean | Sittingbourne | The designated area incorporates the area of St Pauls Street, Sittingbourne | To be provided next reporting year | | AQMA 5
Teynham | NO ₂ annual mean | Teynham | A2 London Teynham | To be provided next reporting year | | AQMA 6-
Ospringe St,
Faversham,
Kent | QMA 6-
springe St, NO ₂ annual
aversham, mean | | Extension of AQMA 2 eastwards to the Mount | To be provided next reporting year | Further information related to declared or revoked AQMAs, including maps of AQMA boundaries (for AQMA 1 to 4) are available online at: https://uk-air.defra.gov.uk/aqma/local-authorities?la_id=268 Air Quality Management Areas are also shown for convenience in Figure 2-1. Figure 2-1 Air Quality Management Areas in Swale Borough Council area A list of LAQM reports, including progress reports, updating and screening assessments, further assessments, detailed assessments etc. can be found on the Kent Air library website⁶ ⁶ http://www.kentair.org.uk/library.php?view=la&sort=undefined&author=9 ## 2.2 Progress and Impact of Measures to address Air Quality in Swale Borough Council Swale Borough Council has taken forward a number of measures during the current reporting year of 2015 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2. More detail on these measures can be found in their respective Action Plans. Key completed measures are: - Diversion of HGV traffic (time/weight or other restriction) - Freight transport planning - Amended signage to direct traffic away from Newington - Discussions with the Co-op re lorry deliveries and emissions and use of parking behind the store as well as community schemes and food miles - Promotion of public transport alternatives with quality bus partners and train services Consideration was given to the implementation of the following measures: - Church Lane Residents Parking Survey - Pay car park at Newington Station - Reclassification of A2 through Newington - Average speed cameras in village (replacing single fixed camera) - Diversion of HGV traffic at Key Street - NOx absorbent materials and plants to absorb traffic pollutants Progress has been slower than expected due to reorganisation of the department and a lack of resources. Swale Borough Council expects the following measures to be completed over the course of the next reporting year: An action plan for Teynham is being created in 2015-2017 for submission to Defra as well as the development of a draft Freight transport plan . The Swale Ecostars pilot will be completed in 2016. Arrangements will be made to continue to corresponds and where possible meet with the Newington and Teynham AQMA steering groups re- form the Ospringe and Sittingbourne community air quality management area steering group, apply for funding to implement the suggestions in the action plan. Swale Borough Council's priorities for the coming year 2016-2017 are: - The greening local community project, attending and feeding into Green grid meetings. Ideas from the community display, the internal and external steering group have been put into a draft AQMA action plan ready for submission with the annual status report. - Establish contact with external stakeholders ready for their consultation. - Display regarding air quality in Teynham library. The existing community steering groups were contacted to discuss the progress with their action plans. Amendments were made to existing action plans. - Swale Ecostars Kent pilot to expansion in 2016/7. - Parking restrictions on the A2 at Teynham by the Joint Transport Board. - Continuing to support KCC Kent Smarter travel project. - Continuing to support Healthy business Awards - Continuing to support KM Schools project promoting sustainable travel to primary schools - Working with partners such as the KCC, Highways England, The Environment Agency and Public health England - Continuing to require planning development mitigation measures on new development proposals. - It is hoped that an air quality strategic document can be devised for Swale during 2017. ## Table 2.2 – Progress on Measures to Improve Air Quality (26th August 2016 update) | Measure
No. | Measure | EU
Category | EU
Classification | Lead
Authority | Planning
Phase | Implementati
on Phase | Key
Performan
ce
Indicator | Target Pollution Reduction in the AQMA | Progress to
Date 2012 | Estimate
d
Completi
on Date | Comments | 2016 update for
ASR | |----------------|--|-----------------------|---|-----------------------------|-------------------|--|-------------------------------------|--|--|--------------------------------------|--
---| | 1 | Temporary
continuous
Monitoring
location in Post
Office, High
Street | Traffic
Management | UTC,
Congestion
management,
traffic
reduction | Swale
Borough
Council | Completed | Completed
and resited in
AQMA | NOx | measureme
nt of NOx
% | Ongoing
despite
breakdowns | 2012 | Evidence for AQMA | Consideration of AQ strategy | | 2 | Data analysis
from the
existing and
new NOx
diffusion tube
monitoring
locations | Public
Information | Vía the
Internet | SBC | Completed | Ongoing | NOx | As above | installation
completed in
2012 | | used for Kent
partnership
website and text
alert | Ongoing as
provides
information and
evidence of need
to continue
AQMA | | 3 | Siting a new
permanent
continuous
monitoring
location at Co-
op High Street
Newington | Public
Information | Vía the
Internet | SBC | Completed | ongoing | Measureme
nt of NOx
continued | As above | Vast
improvement in
monitoring
equipment in
Newington | 2012 | Measurable evidence for complete years in future with modern up to date equipment to MCERTs standard | Measureable improvement in air pollution in Newington Continuing to monitor as site near the border with Medway and new development proposals | | 4 | Discussions with the Co-op re lorry deliveries and emissions and use of parking behind the store as well as community schemes and food miles | Public
Information | Vía the
Internet | SBC | Completed | completed
and new car
and lorry
parking
provided | Success as | 1% | Cycling project
ongoing and
Funding was
obtained in
2014 for a Bus
project but had
to be returned
as the Bus
company would
not do the
adaptation | 2012 | As above | Works completed2012 Use of car park continues. This together with the implementation of a greening project and other simultaneous had a measurable impact | | Measure
No. | Measure | EU
Category | EU
Classification | Lead
Authority | Planning
Phase | Implementati
on Phase | Key
Performan
ce
Indicator | Target Pollution Reduction in the AQMA | Progress to
Date 2012 | Estimate
d
Completi
on Date | Comments | 2016 update for
ASR | |----------------|---|---|---|-------------------|---|--------------------------|--|--|--------------------------|--------------------------------------|--|---| | 5 | Promotion of
public transport
alternatives
with quality bus
and train
services at
enhanced
frequencies | Alternatives
to private
vehicle use | Other | KCC | Ongoing | ongoing | Statistical
evidence
of
behaviour
and travel
choices | 1% | Ongoing | Ongoing | Failure of the bus project will have a detrimental impact on promotion of travel alternatives in the AQMAs however 2 companies in Swale replaced some of their buses with alternative fuel ones there is a train but since the High speed rail this does not stop at Newington as frequently | Still being done
with promotion of
KCC smarter
travel planning
website link from
our website | | 6 | Car hire /share schemes | Alternatives
to private
vehicle use | Car & lift
sharing
schemes | ксс | working
with KCC
on Kent Car
share | Ongoing | KCC
journey
reductions | 0.50% | | Ongoing | None | Ditto | | 7 | Investigation of impact from additional traffic from any proposed planning applications re housing and industry | Policy
Guidance
and
Development
Control | Air Quality
Planning and
Policy
Guidance | | | Implemented 2012 | comments
made on
application
regarding
air quality
mitigation | | | | | Continuing | | 8 | Church Lane
Residents
Parking Survey | Promoting
Travel
Alternatives | Personalised
Travel
Planning | SBC | Not done | Not started | number of parked vehicles | | | | suggestion
dismissed by
steering group | KCC smarter
travel challenge
website | | Measure
No. | Measure | EU
Category | EU
Classification | Lead
Authority | Planning
Phase | Implementati
on Phase | Key
Performan
ce
Indicator | Target Pollution Reduction in the AQMA | Progress to
Date 2012 | Estimate
d
Completi
on Date | Comments | 2016 update for
ASR | |----------------|--|---|--|--------------------------|---|--------------------------|-------------------------------------|--|---------------------------------|--------------------------------------|--|--| | 9 | Pay car park at
Newington
Station | Alternatives
to private
vehicle use | Rail based
Park & Ride | South
Eastern
rail | Not done | Not started | | | | | ditto | New planning
applications for
homes may
provide an
opportunity to
progress this | | 10 | Reclassification
of A2 through
Newington | Transport
Planning and
Infrastructure | Other | National | Not realistic | Not started | | | | | major old road
with no
alternative other
than bypasses
which will not be
funded | Consultants appointed 2016 | | 11 | Diversion of
HGV traffic
(time/weight or
other restriction) | Traffic
Management | Strategic
highway
improvements,
Re-prioritising
road space
away from
cars, inc
Access
management,
Selective
vehicle
priority, bus
priority, high
vehicle
occupancy
lane | DFT /SBC/
KCC/ | Northern
relief road
partially
completed | Started | Traffic counts | 3% | Ongoing | | | Discussed at
Freight transport
plan meeting | | 12 | Work with Satellite Navigation companies to amend appropriate (HGV) routes | Public
Information | via other
mechanisms | ксс | Discussions with KCC | started | traffic
counts | 1% | Slow not
supported by
KCC | 2015 | | KCC have SN route planning | | Measure
No. | Measure | EU
Category | EU
Classification | Lead
Authority | Planning
Phase | Implementati
on Phase | Key
Performan
ce
Indicator | Target Pollution Reduction in the AQMA | Progress to
Date 2012 | Estimate
d
Completi
on Date | Comments | 2016 update for
ASR | |----------------|--|---|--|---------------------------|---|----------------------------|--|--|--------------------------|--------------------------------------|---------------------------------------|---| | 13 | Amended
signage to
direct traffic
away from
Newington | Transport
Planning and
Infrastructure | Other | ксс | suggested
in
discussions
with KCC
Highways | Started | signs
improved to
ask HGV to
avoid the
A2 and use
the M2 so
that only
local traffic | 2% | | | | Discussed at
Freight transport
plan meeting | | 14 | Average speed
cameras in
village
(replacing single
fixed camera) | Traffic
Management | Reduction of
speed limits,
20mph zones | KCC/
Parish
Council | discussions
with KCC | Not started | CCTV only
local
cameras | | | | | Discussed at
steering groups
and KCC and
Freight transport
plan meeting | | 15a | Close Bull Lane to vehicles | Transport
Planning and
Infrastructure | Other | KCC | discussions
with KCC | consideration given by KCC | | | | | | Would need to be agreed to be implemented by KCC and Highways England | | 15b | Diversion of
HGV traffic at
Key Street | Transport
Planning and
Infrastructure | Other | ксс | discussions with KCC | Not started | | | | | The A2 is used when the M2 is blocked | Discussed at
Freight transport
plan meeting | | 16 | Low emission
zones (LEZ)
or Clean air
zones | Promoting
Low
Emission
Transport | Low Emission
Zone (LEZ) | SBC | Will be
considered
once a
funded /
model
scheme is
devised for
smaller
Councils | | | | | | | To be considered as London scheme expands to Kent | | Measure
No. | Measure | EU
Category | EU
Classification |
Lead
Authority | Planning
Phase | Implementati
on Phase | Key
Performan
ce
Indicator | Target Pollution Reduction in the AQMA | Progress to
Date 2012 | Estimate
d
Completi
on Date | Comments | 2016 update for
ASR | |----------------|--|-------------------------------------|--|---|---------------------------|--------------------------|--|--|---|--------------------------------------|----------|--| | 17 | Ideas such as
NOx absorbing
paint, tarmac,
roofing etc. | Public
Information | Other | SBC
Highways
and
Property
owners | Pilot
investigated | Not started | | | On hold until sponsorship and funding | | | On hold until sponsorship and funding | | 18 | Community
trees and
planting
projects | Public
Information | Other | Parish
Council/
Highways
and SBC | completed | completed | number
trees and
planting
projects | 1% | | | | Possible project
opportunity
meeting with
Swale in Bloom for
Green walls and
roofs projects | | 19 | Co-op:
Encourage
improvements to
car park, delivery
off A2, etc. | Traffic
Management | Workplace
Parking Levy,
Parking
Enforcement
on highway | Со-ор | discussions
with co-op | completed | reduction in
cars parked
inappropriat
ely | 0.10% | ongoing free
car park for
customers at
Newington | | | Initial discussions
at Teynham for
parking explored | | 20 | Industry:
Encourage
consideration of
alternative
routes/times for
traffic | Traffic
Management | Workplace
Parking Levy,
Parking
Enforcement
on highway | KCC /
MKIP
Healthy
workplace
initiative | partnership
project | Started | number of
travel
planning
schemes | 1% | | 2020 | | Discussed at Freight transport plan meeting and with Head of MKIP parking | | 21 | School Promote
alternative
routes for access
and journeys. | Promoting
Travel
Alternatives | School Travel
Plans | KCC/ SBC
KM group | discussions with KCC | Started | sign up for
Kent travel
project | 1% | 22 schools
participatd in
2012 WOW
and Walk on
Wednesday
and Iwade was
awarded top
eco school in
Kent | | | Project continues
Swale wide with
KM group | | Measure
No. | Measure | EU
Category | EU
Classification | Lead
Authority | Planning
Phase | Implementati
on Phase | Key
Performan
ce
Indicator | Target Pollution Reduction in the AQMA | Progress to
Date 2012 | Estimate
d
Completi
on Date | Comments | 2016 update for
ASR | |----------------|--|---|--|---|---|--|--|--|--------------------------|--------------------------------------|----------|--| | 22 | Work with
school's School
Travel Plan | Promoting
Travel
Alternatives | School Travel
Plans | KM/ SBC
funded
projects in
schools | ongoing | Ongoing | measured
reduction in
school
traffic in
Swale | 1% | | | | KCC encourage
these in all schools | | 23 | School OPAL
project-NOx
monitoring
involvement | Public
Information | Other | Imperial college | completed | completed | monitoring
and
statistical
evidence | | | | | | | 27 | Stagger school times. | Policy
Guidance
and
Development
Control | Other policy | ксс | considered
by the KCC
and schools | | some
schools
wanted it
and did it | | ongoing | | | | | 28 | Promotion of
public transport
e.g. Ride on the
train, green taxis
and bus
schemes | Promoting
Travel
Alternatives | Intensive
active travel
campaign &
infrastructure | KCC SBC / local transport and businesses | In progress | ongoing
discussions
and
partnership
activities | change in
travel
modes and
measureme
nt of the
use of
alternatives | 1% | ongoing | ongoing | 2022 | Work continues
with the KCC
prtnership projects
each year | | 30 | Working through the planning process to require and encourage action to minimise impact of new developments affecting the High Street: | Policy
Guidance
and
Development
Control | Air Quality
Planning and
Policy
Guidance | SBC / KCC | In progress | ongoing
discussions | number of
AQ reports
resulting in
mitigation | 1% | ongoing | 2022 | | Ongoing work with Strategic planning | | Measure
No. | Measure | EU
Category | EU
Classification | Lead
Authority | Planning
Phase | Implementati
on Phase | Key
Performan
ce
Indicator | Target Pollution Reduction in the AQMA | Progress to
Date 2012 | Estimate
d
Completi
on Date | Comments | 2016 update for
ASR | |----------------|---|---|---|--|--|--|--|--|--------------------------|--------------------------------------|--|--| | 31 | Reduction of
Traffic | Transport
Planning and
Infrastructure | Public
transport
improvements-
interchanges
stations and
services | | In progress | ongoing
discussions
and
partnership
activities | change in
travel
modes and
measureme
nt of the
use of
alternatives | 1% | ongoing | ongoing | 2022 | Discussed at Bus quality partnership meeting in 2013 | | 32 | Supporting reduction in traffic impact | Promoting
Travel
Alternatives | Promotion of cycling | SBC | In progress | ongoing
discussions
and
partnership
activities | change in
travel
modes and
measureme
nt of the
use of
alternatives | 1% | ongoing | ongoing | 2022 | Involved in promotion and marketing of an annual KCC project | | 33 | Promotion of
more efficient
vehicles
(especially
Council owned
or supported bus
services) | Vehicle Fleet
Efficiency | Fleet
efficiency and
recognition
schemes | SBC/KCC | In progress | ongoing
discussions
and
partnership
activities | change in
travel
modes and
measureme
nt of the
use of
alternatives | 1% | planning | ongoing | 2022 | Considered when contractors, fleets and vehicles are procured | | 34 | Tyre inflation
and smart
driving
campaigns | Freight and
Delivery
Management | Freight
Partnerships
for city centre
deliveries | Project
started for
Swale
ECO stars
with
contractors
TTR | competed
and funding
obtained for
freight
transport
project pilot | started
Spring 2015 | HGV
signed up | 1% | ongoing | Jun-15 | is successful
could be
continued in other
areas in Kent | Swale Ecostars
pilot project
resulted in 14
businesses signing
up for this award
scheme in Swale
2015-2016 | | 35 | Plug in points
for electric cars
and bikes in
village car
parks, local
employers and
at the station | Promoting
Low
Emission
Transport | Procuring
alternative
Refuelling
infrastructure
to promote
Low Emission
Vehicles, EV
recharging,
Gas fuel
recharging | SBC/KCC | In progress | ongoing
discussions
and
partnership
activities | change in
travel
modes and
measureme
nt of the
use of
alternatives | 1% | | ongoing | 2022 | Climate change
synergies and
Regional funds
enabled some
charging points for
electric vehicles in
Swale | | Measure
No. | Measure | EU
Category | EU
Classification | Lead
Authority | Planning
Phase | Implementati
on Phase | Key
Performan
ce
Indicator | Target Pollution Reduction in the AQMA | Progress to
Date 2012 | Estimate
d
Completi
on Date | Comments | 2016 update for
ASR | |----------------|--|--|--|----------------------------------|---------------------|--|--
--|--------------------------|--------------------------------------|----------|---| | 36 | Freight
transport Plan | Freight and
Delivery
Management | Freight
Partnerships
for city centre
deliveries | SBC KCC
and other
partners | In progress
2016 | ongoing
discussions
and
partnership
activities | Submission
to Defra
followed by
implementa
tion once
approved | 3 % | | 2018 | | Three year project Draft plan to be sent to Defra and the KCC and external consultees during 2017 | | 37 | New equipment in Sittingbourne in two locations as well as resited in Ospringe to measure on the roadside in the street canyon | Public
information
from
measuremen
t of air
pollution
levels | Via the internet | SBC | 2012 | 2013 | Results of
measuring
improved
air pollution | 3 % | planned and
installed | 2013/201
4 | | Equipment sites to be reduced due to budget and staff resources restrictions to only 3 for the whole of Swale one at Ospringe to be resited again | ## 2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and or Concentrations As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of PM_{2.5} (particulate matter with an aerodynamic diameter of 2.5µm or less). There is clear evidence that PM_{2.5} has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases. Work carried out by Public Health England as part of the Public Health Outcomes Framework (PHOF) shows that the mortality associated with particulate air pollution within Swale Borough Council is 5.5 %. This information is available from the following web link: $\frac{http://www.phoutcomes.info/search/air\#page/1/gid/1/pat/6/par/E12000008/ati/101/are}{/E07000113/iid/30101/age/230/sex/4}$ Figure 2-2 shows that the mortality calculated for Swale Borough Council is slightly greater than that calculated for south east England (5.2 %) and England (5.3 %) as a whole. Figure 2-2 Fraction of mortality attributed to particulate air pollution in Swale Borough Council Swale Borough Council is currently developing its approach to address PM_{2.5} in partnership with public health local authority officers. The approach to address PM_{2.5} will be reported on in the 2017 Annual Status report. However this will depend on staff and resources being available to the local authority in 2017. ## 3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance #### 3.1 Summary of Monitoring Undertaken #### 3.1.1 Automatic Monitoring Sites This section sets out what monitoring has taken place and how it compares with annual mean and short term objectives. Swale Borough Council undertook automatic monitoring at four sites during 2015: | Newington 3 | AQMA 1 | |--------------------------------|--------| | Ospringe Roadside 2, Faversham | AQMA 2 | | Canterbury Road, Sittingbourne | AQMA 3 | | St Paul's Street, Milton | AQMA 4 | Table A.1 in Appendix A shows the details of the sites. A map showing the location of the automatic monitoring sites is provided in Figure D.2. Monitoring results are available on the Kent Air website⁷. As the data capture at the Canterbury Road sampling site was site was less than 75 %, the concentrations required annualisation. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C. #### 3.1.2 Non-Automatic Monitoring Sites Swale Borough Council undertook non- automatic (passive) monitoring of NO2 at fifty seven sites during 2015. Table A.2 in Appendix A provides of the sites in terms of distance to kerb, distance to relevant exposure, whether in AQMA or not and sampling inlet height. Within Table A.2 the sites are listed in five separate geographical areas: Sheerness, Newington, Faversham and Teynham, Sittingbourne and Milton. Error! Not a valid bookmark self-reference. connects these areas with the AQMAs. Maps showing the location of the monitoring sites are provided in Appendix D. - ⁷ http://www.kentair.org.uk/data/data-selector Table 3-1- Areas monitored by diffusion tube and whether monitoring occurs within an AQMA | Area | Location | Are sites in an Air
Quality Management
Area? | Figure in
Appendix D | | |---------------|--|--|-------------------------|--| | Sheerness | Sheerness | No | D.3 | | | Newington | Along Newington High Street | Yes, some are located in AQMA 1 | D.4 | | | Faversham and | Along Ospringe Street and London Road within Faversham | Yes, Faversham some sites in AQMA 2 | D.5
D.7 | | | Teynham | Within Teynham along
London Road | Yes, Teynham some sites in AQMA 5 | D.6 | | | Sittingbourne | Most sites are located along Canterbury Road in Sittingbourne | Yes, some sites in AQMA 3 | D.8 | | | Milton | St Paul's Street located within Milton (a suburb of Sittingbourne) | Yes, some sites in AQMA 4. | D.9 | | The diffusion tube annual average concentrations were corrected using a bias correction factor (0.80) derived from local co-located diffusion tube and automatic analysers. Further details on Quality Assurance/Quality Control (QA/QC) and bias adjustment for the diffusion tubes are included in Appendix C. #### 3.2 Individual Pollutants The air quality monitoring results presented in this section are, where relevant, adjusted for "annualisation" and bias. Further details on adjustments are provided in Appendix C. #### 3.2.1 Nitrogen Dioxide (NO₂) Table A.3 in Appendix A and Figure 3-1 shows that the annual mean nitrogen dioxide concentrations from 2011 to 2015 measured at each of the automatic monitoring stations. A summary of trends in concentrations at the automatic sampling sites is provided below: - Concentrations at Newington 3, along the High Street in Newington, reached a maximum of 34.8 μg m⁻³ in 2013 but were just below 30 μg m⁻³ in 2015. - Concentrations at Ospringe Roadside 2, showed a steady decrease from 38.8 μg m⁻³ in 2011 to 32.6 μg m⁻³ in 2015. - Concentrations at the Canterbury Road site peaked at 42.5 μg m⁻³ in 2013 but decreased 35.9 μg m⁻³ (annualised value) in 2015. - Concentrations at St Paul's street showed a steady increase from 33.7 μg m⁻³ in 2013 to 38.8 μg m⁻³ in 2015. Figure 3-1: Nitrogen dioxide concentrations measured at automatic monitoring stations from 2011 to 2015 Figure 3-2 to Figure 3-6 shows in a graphical format the annual average nitrogen dioxide concentrations measured by diffusion tube at each at of the fifty seven sites from 2011 to 2015. The data can also be seen in Table A.3 in Appendix A. The full 2015 dataset of monthly mean diffusion tube values is provided in Appendix B. In general, concentrations in 2015 tend to be amongst the lowest of the five year period, though at some sites, like SW35 (60 High Street Newington) and SW42 (High Street opposite Church Lane) the concentration has remained consistently above the annual objective concentration. Figure 3-2 Nitrogen dioxide concentrations measured by diffusion tubes in Sheerness from 2011 to 2015 Figure 3-3 Nitrogen dioxide concentrations measured by diffusion tubes in Newington from 2011 to 2015. Area contains AQMA 1. Figure 3-4 Nitrogen dioxide concentrations measured by diffusion tubes in Faversham and Teynham from 2011 to 2015. Area contains AQMA 2 and AQMA 5 (SW79, SW80, SW91 and SW92) Figure 3-5 Nitrogen dioxide concentrations measured by diffusion tubes in Sittingbourne from 2011 to 2015. Area contains AQMA 3. Figure 3-6 Nitrogen dioxide concentrations measured by diffusion tubes in Milton from 2011 to 2015. Area contains AQMA 4. In 2015, twelve diffusion tube sampling sites measured above the annual objective concentration (40 µg m⁻³). These are listed in Table 3-2. Also presented are the distance corrected concentrations calculated at nearby relevant receptor locations (derived using the distance with roads calculator s⁸). Even after applying the distance corrections, concentrations at most sites remain above the above the annual objective concentration. Following the recommendation in the 2015 USA report, there was sufficient evidence to suggest that the Ospringe Road AQMA (AQMA 2) should be extended to include the Mount. The revised AQMA Order for Ospringe Road came in to effect on 3rd May 2016 (as AQMA 6). There is no relevant exposure at SW82 (Conservative Club, St Paul's Street). Table 3-2 Sampling sites where the annual average exceeds the annual objective in 2015 | Site code | Location | AQMA | Annual average NO ₂
concentration,
μg m ⁻³ | | | | |-----------|--|------|--|---------------------|--|--| | | Location | | Ratified with bias correction (from Table A.3) | Distance correction | | | | SW35 | 60 High Street, Newington | 1 | 44.2 | 39.6 | | | | SW42 x 3 | High Street, Opp Church Lane | 1 | 47.3 | 42.1 | | | | SW22 | 35 Ospringe Street | 2 | 47.7 | 47.7 | | | | SW28 | Mayors Arms, Ospringe
Street | 2 | 49.4 | 49.4 | | | | SW29 | 43 Ospringe Street | 2 | 48.6 | 41.3 | | | | SW31 | 4 Ospringe Street | 2 | 45.2 | 41.4 | | | | SW32 | 11 Ospringe Street | 2 | 40.2 | 37.1 | | | | SW95 | The Mount, London Road, Faversham | 6 | 70.2 | 54.9 | | | | SW96 | Maison Dieu, Ospringe
Street, Faversham | 2 | 47.0 | 47.0 | | | | SW51 | 14/16 St Pauls Street,
Milton | 4 | 40.5 | 39.2 | | | | SW82 x 3 | Conservative Club, St
Pauls Street | 4 | 55.5 | Not applicable | | | | SW89 x 3 | St Paul's Air Quality
Station, Milton | 4 | 41.8 | 33.4 | | | ⁸
http://laqm.defra.gov.uk/documents/NO2withDistancefromRoadsCalculatorIssue4.xls Table A.4 in Appendix A compares the ratified continuous monitored NO₂ hourly mean concentrations for the past 5 years with the air quality objective of 200µg/m³, not to be exceeded more than 18 times per year. There was only a single measured hour exceedance for all four automatic analysers- so there no exceedance of the hourly objective for nitrogen dioxide. Taking into account that there was no distance corrected distance corrected annual average concentrations (shown in Table 3-2) above 60 μ g m⁻³ it would be unlikely that there was exceedance of the hourly objective at these diffusion tube sites. #### 3.2.2 Particulate Matter (PM₁₀) Table A.5 in Appendix A presents the ratified monitored PM_{10} annual mean concentrations measured at the Ospringe Roadside for the past 5 years. These annual mean concentrations are compared with the air quality objective of $40\mu g/m^3$ in Figure 3-7. The measured annual mean concentration has remained consistently more than $10 \mu g m^{-3}$ below the annual mean objective concentration. Figure 3-7 PM₁₀ concentrations measured at Ospringe Road from 2011 to 2015 Table A.6 in Appendix A presents the ratified continuous monitored PM₁₀ daily mean concentrations measured at Ospringe Street for the past 5 years. Figure 3-8 compares the number of days which exceeded the air quality objective of 50μg/m³ with the number (35 days) which would caused exceedance. Figure 3-8 Number of exceedances of daily mean objective of 50 $\mu g\ m^{\text{-}3}$ at Ospringe Street since 2011 The number of measured exceedances is significantly less than 35 days so there is no exceedance of the daily objective for PM_{10} . ## **Appendix A: Monitoring Results** **Table A.1 – Details of Automatic Monitoring Sites** | Site ID | Site
Name | Site
Type | X OS
Grid
Ref | Y OS
Grid
Ref | Pollutants
Monitored | | Monitoring
Technique | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance
to kerb
of
nearest
road (m) | Inlet
Height
(m) | |---------|-----------------------------|--------------|---------------------|---------------------|-------------------------|--------|---------------------------|--|--|------------------------| | ZW6 | Newington (3) | Roadside | 585861 | 164817 | NO2 | Υ | Chemiluminescence | Y(5m) | 1.6 | 2.35 | | ZW3 | Ospringe
Roadside
(2) | Roadside | 600360 | 160869 | NO2 PM10 | Y- NO2 | Chemiluminescence
TEOM | Y (0m) | 1.7 | 1.95 | | ZW7 | Canterbury
Road | Roadside | 591483 | 163472 | NO2 | Υ | Chemiluminescence | Y(4m) | 2 | 1.9 | | ZW8 | St Paul's
Street | Roadside | 590264 | 164396 | NO2 | Y | Chemiluminescence | Y (9m) | 2.5 | 3.2 | ^{1.} Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property). ^{2.} N/A if not applicable. **Table A.2 – Details of Non-Automatic Monitoring Sites** | Site ID | Site Name | Site Type | X OS
Grid
Ref | Y OS
Grid
Ref | Pollutants
Monitored | In AQMA? | to Relevant Exposure (m) (1) | Distance
to kerb of
nearest
road (m) | Tube collocated with a Continuous Analyser? | Height
(m) | |-----------|-----------------------------------|-----------|---------------------|---------------------|-------------------------|--------------------------|------------------------------|---|---|---------------| | Sheerness | | | | | | | | | | | | SW07 | Harty, Sheerness | Rural | 600745 | 169572 | NO2 | N | N | N/A | N | 1.5 | | SW11 | Queenborough Rd, Halfway | Roadside | 593002 | 172853 | NO2 | N | Y-0 | 5.5 | N | 1.75 | | SW13 | Main Road, Q/B | Roadside | 591487 | 172048 | NO2 | N | Y-1.4 | 3.8 | N | 1.9 | | SW14 | Rushenden Road, Q/B | Roadside | 591170 | 172087 | NO2 | N | Y-1.4 | 1.7 | N | 2.45 | | SW84 | Sheerness College 1 | Roadside | 591725 | 175045 | NO2 | N | N | 3.5 | N | 1.85 | | SW85 | Sheerness College 2 | Roadside | 591751 | 175009 | NO2 | N | N | 2.3 | N | 1.9 | | SW86 | Swale Foyer | Roadside | 591723 | 175020 | NO2 | N | N | 1.6 | N | 2 | | Newington | | | | | | | • | | | | | SW19 | Newington Social Club | Roadside | 585918 | 164790 | NO2 | Y
(Newington
AQMA) | Y-0 | 2.3 | N | 2.4 | | SW20 x 3 | Newington Co Op, A2,
Newington | Roadside | 585846 | 164820 | NO2 | Y
(Newington
AQMA) | Y-0 | 1.6 | Triplicate & co-located (ZW6 - Newington (3)) | 2.3 | | SW35 | 60 High Street, Newington | Roadside | 585961 | 164779 | NO2 | Y
(Newington
AQMA) | 1.4 | 1.4 | | 2.4 | | SW36 | 49 High Street, Newington | Roadside | 585928 | 164798 | NO2 | Y
(Newington
AQMA) | <1 | 3.1 | N | 2.2 | | SW37 | 32 High Street, Newington | Roadside | 585867 | 164801 | NO2 | Y
(Newington
AQMA) | 4 | 1.7 | N | 2.3 | | SW38 | 15a High Street, Newington | Roadside | 585781 | 164834 | NO2 | Y
(Newington
AQMA) | 1.6 | 2.4 | N | 2 | |-------------|-------------------------------------|---------------------|--------|--------|-----|--------------------------|---------|-----|---|------| | SW42 x 3 | High Street, Opp Church Lane | Roadside | 585936 | 164788 | NO2 | Y
(Newington
AQMA) | Y-1.4 | 1.3 | Triplicate | 2.2 | | SW45 | 64 High Street, Newington | Roadside | 585992 | 164772 | NO2 | Y
(Newington
AQMA) | Y-0 | 1.2 | N | 2.3 | | SW66 | 96/94 High Street, Newington | Roadside | 586083 | 164747 | NO2 | N | Y – 0 | 1.2 | N | 1.9 | | SW78 | Vari Restaurant, High Street | Roadside | 585960 | 164787 | NO2 | Y
(Newington
AQMA) | Y – 0.9 | 2.2 | N | 1.9 | | Faversham a | and Teynham | | | | | | | | | | | SW22 | 35 Ospringe Street | Roadside | 600307 | 160863 | NO2 | Y (Ospringe
Rd AQMA) | Y-0 | 2.7 | N | 2 | | SW27 | 44 Ospringe Street, Faversham | Roadside | 600241 | 160894 | NO2 | Y (Ospringe
Rd AQMA) | Y-0 | 2.5 | N | 2 | | SW28 | Mayors Arms, Ospringe Street | Roadside | 600223 | 160889 | NO2 | Y (Ospringe
Rd AQMA) | Y-0 | 1.5 | N | 2.4 | | SW29 | 43 Ospringe Street | Roadside | 600274 | 160871 | NO2 | Y (Ospringe
Rd AQMA) | 3 | 2.4 | N | 2.07 | | SW30 x 3 | 18/19 Ospringe Street | Roadside | 600358 | 160869 | NO2 | Y (Ospringe
Rd AQMA) | 1.7 | 2.3 | Triplicate & co-located (ZW3 - Ospringe Roadside (2)) | 1.9 | | SW31 | 4 Ospringe Street | Roadside | 600444 | 160848 | NO2 | Y (Ospringe
Rd AQMA) | <1 | 1.5 | N | 2.4 | | SW32 | 11 Ospringe Street | Roadside | 600420 | 160845 | NO2 | Y (Ospringe
Rd AQMA) | 1.3 | 2.3 | N | 2 | | SW34 | Hernehill Village Hall | Urban
Background | 606624 | 161110 | NO2 | N | N/A | N | N | 1.9 | | SW79 | Belle Friday Centre, A2 Teynham | Roadside | 594840 | 162566 | NO2 | N | Y – 0 | 4 | N | 1.6 | | SW80 | Michaels Hairdressers A2
Teynham | Roadside | 595160 | 162470 | NO2 | N | Y – 0.6 | 1.5 | N | 1.8 | | SW91 | 72 London Road, Teynham | Roadside | 595149 | 162459 | NO2 | N | Y- 0 | 2 | N | 1.75 | | SW92 | 64 London Road, Teynham | Roadside | 595195 | 162446 | NO2 | N | Y-1 | 3.1 | N | 1.9 | |--------------|---|---------------------|--------|--------|-----|-------------------------|--------|-----|---|------| | SW93 | 4 Water Lane, Ospringe,
Faversham | Roadside | 600361 | 160842 | NO2 | N | Y-0 | 1.7 | N | 1.8 | | SW94 | Water Lane R/o 15 Ospringe
Street, Faversham | Roadside | 600370 | 160842 | NO2 | N | Y-2.0 | 2.2 | N | 1.8 | | SW95 | The Mount, London Road, Faversham | Roadside | 600518 | 160826 | NO2 | N | Y-3.6 | 1.6 | N | 1.9 | | SW96 | Maison Dieu, Ospringe Street, Faversham | Roadside | 600358 | 160859 | NO2 | Y (Ospringe
Rd AQMA) | Y-0 | 3 | N | 1.9 | | SW98 | Canterbury Road, Faversham | Roadside | 601818 | 160474 | NO2 | N | Y-2.0 | 0.5 | N | 1.9 | | Sittingbourn | e | | | | | | | | | | | SW53 | 114 East Street, Sittingbourne | Roadside | 591401 | 163471 | NO2 | Y (East St
AQMA) | Y-0 | 5.1 | N | 1.6 | | SW56 | 126 East Street, Sittingbourne | Roadside | 591451 | 163465 | NO2 | Y (East St
AQMA) | Y-0 | 2.9 | Triplicate | 1.85 | | SW58 | Dover Street Filling Station, Dover Street | Roadside | 590365 | 163748 | NO2 | N | N | 2 | N | 2.4 | | SW62 | Key Street, Sittingbourne | Roadside | 588178 | 164235 | NO2 | N | Y-15 | 1.9 | N | 2.1 | | SW74 | Bell Road Retirement Apartments | Roadside | 590983 | 163545 | NO2 | N | Y-2.17 | 1.7 | N | 1.95 | | SW75 | 109 Canterbury Road,
Sittingbourne | Roadside | 592026 | 163342 | NO2 | N | Y-4.0 | 1.3 | N | 2 | | SW76 | 155 Canterbury Road,
Sittingbourne | Roadside | 592194 | 163306 | NO2 | N | Y-3.5 | 1.7 | N | 2.2 | | SW77 | Kemsley Fields, Swale Way | Urban
Background | 591035 | 166521 | NO2 | N | N | 4.4 | N | 2 | | SW83 | Pembury Court, Dover Street | Roadside | 590375 | 163774 | NO2 | N | Υ | 1.5 | N | 2.05 | | SW87 x 3 | Canterbury Road AQ Station | Roadside | 591489 | 163472 | NO2 | Y (East St
AQMA) | N | 4.8 | Triplicate & co-located (ZW7 - Canterbury Road) | 1.7 | | SW88 | Sonara Way | Urban
Background | 589320 | 165047 | NO2 | N | N | 1.8 | N | 1.9 | | SW90 | J Of Canterbury Rd & Goodnestone Rd, Sittingbourne | Roadside | 591551 | 163456 | NO2 | N | Y-2.9 | 2 | N | 1.6 | |----------|--|----------|--------|--------|-----|-----------------------|-------|------|---|------| | SW97 | Swale House, Crown Quay Lane, Sittingbourne | Roadside | 591007 | 163614 | NO2 | N | Y-1.6 | 2.4 | N | 2 | | Milton | | | | | | | | | | | | SW39 x 3 | Giles Young Court, Milton | Roadside | 590359 | 164408 | NO2 | Y (St Paul's AQMA) | Y-0 | 9 | N | 2.6 | | SW51 | 14/16 St Pauls Street, Milton | Roadside | 590235 | 164408 | NO2 | Y (St Paul's AQMA) | Y-0.5 | 2 | N |
2.2 | | SW52 | 20/22 St Pauls Street, Milton | Roadside | 590203 | 164409 | NO2 | Y (St Paul's AQMA) | Y-0 | 3 | N | 2.25 | | SW65 | 5 Crown Road, Milton | Roadside | 590341 | 164558 | NO2 | N | Y-0 | 2.4 | N | 1.85 | | SW70 | Stumble Inn, St Pauls Street,
Sittingbourne | Roadside | 590142 | 164425 | NO2 | Y (St Paul's
AQMA) | Y-3.6 | 3 | N | 2.5 | | SW71 | o/s 8 Staple Close, Staplehurst
Road | Roadside | 590096 | 164455 | NO2 | N | Y-6.1 | 3 | N | 2.2 | | SW72 | o/s 1 Alexander Court, Chalkwell Road | Roadside | 590094 | 164397 | NO2 | N | Y-2 | 1.7 | N | 2.1 | | SW73 | Adj to 14 Chalkwell Road,
Sittingbourne | Roadside | 590122 | 164405 | NO2 | Y (St Paul's AQMA) | Y-2.8 | 3 | N | 2.2 | | SW82 x 3 | Conservative Club, St Pauls
Street | Roadside | 590228 | 164396 | NO2 | Y (St Paul's AQMA) | N | 1.65 | Triplicate | 2.3 | | SW89 x 3 | St Paul's Air Quality Station,
Milton | Kerbside | 590264 | 164396 | NO2 | Y (St Paul's
AQMA) | Y-9.0 | 4 | Triplicate & co-located (ZW8 - St Paul's Street)) | 3.1 | ⁽¹⁾ Om if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property). ⁽²⁾ N/A if not applicable. Table A.3 – Annual Mean NO₂ Monitoring Results | | Site | Monitoring | Valid Data
Capture for | Valid Data | NO ₂ An | nual Mean | Concentra | tion (µg/m | ³) ⁽³⁾ | |------------------------------|----------|----------------|---|----------------------|--------------------|-----------|-----------|------------|-------------------------------| | Site ID | Туре | Туре | Monitoring
Period (%) ⁽¹⁾ | Capture 2015 (%) (2) | 2011 | 2012 | 2013 | 2014 | 2015 | | ZW6
Newington (3) | Roadside | Chemilumesence | 97.8 | 97.8 | 28.5 | 30.4 | 34.8 | 32.9 | 29.7 | | ZW3 Ospringe
Roadside (2) | Roadside | Chemilumesence | 95.2 | 95.2 | 38.8 | 34.8 | 36.9 | 34.4a | 32.6 | | ZW7
Canterbury
Road | Roadside | Chemilumesence | 98.6 | 98.6 | 36.9 | 37.4 | 42.5 | 34.3 | 35.9a | | ZW8 St Paul's
Street | Roadside | Chemilumesence | 87.6 | 87.6 | - | - | 33.6 | 35.1 | 37.7 | | | | | S | Sheerness | | | | | | | SW07 | Rural | | 100 | 100 | 13.5 | 13.3 | 14.1 | 10.7 | 14.0 | | SW11 | Roadside | Diffusion Tube | 100 | 100 | 30.3 | 24.3 | 34.1 | 22.1 | 22.9 | | SW13 | Roadside | Diffusion Tube | 100 | 100 | 25.2 | 24.2 | 23.1 | 21.3 | 19.6 | | SW14 | Roadside | Diffusion Tube | 100 | 100 | 27.6 | 24.4 | 22.7 | 20 | 20.5 | | SW84 | Roadside | Diffusion Tube | 92 | 92 | 37.3 | 30 | 27.6 | 26.1 | 25.2 | | SW85 | Roadside | Diffusion Tube | 83 | 83 | 37.4 | 29.5 | 32.8 | 30.3 | 27.9 | | SW86 | Roadside | Diffusion Tube | 75 | 75 | 24.2 | 28.9 | 24.4a | 28.8 | 30.1 | | | | | N | lewington | | | | | | | SW19 | Roadside | Diffusion Tube | 83 | 83 | 29.7 | 28.8 | 29.8 | 25.4 | 29.6 | | SW20 | Roadside | Diffusion Tube | 92 | 92 | 37.3 | 34.2 | 33.4 | 35.3a | 31.2 | | SW35 | Roadside | Diffusion Tube | 100 | 100 | 47.6 | 46.1 | 45.9 | 47.7 | 44.2 | | SW36 | Roadside | Diffusion Tube | 83 | 83 | 38.9 | 33.4 | 34.1 | 29.2 | 33.8 | | SW37 | Roadside | Diffusion Tube | 100 | 100 | 40.7 | 41.5 | 36.5a | 36.7 | 31.4 | | SW38 | Roadside | Diffusion Tube | 58 | 58 | 35.4 | 34.7 | 36.4 | 33.4a | 31.4a | | SW42 | Roadside | Diffusion Tube | 92 | 92 | 47.9 | 47.9 | 48.8 | 49.3 | 47.3 | | SW45 | Roadside | Diffusion Tube | 75 | 75 | 44.4 | 42 | 40.4 | 41.3 | 39.6 | | SW66 | Roadside | Diffusion Tube | 92 | 92 | 45 | 39.2 | 40.9 | 42.6 | 36.2 | | SW78 | Roadside | Diffusion Tube | 75 | 75 | 42.1 | 37.2 | 41.3 | 37 | 38.8 | | | | | Faversh | am and Teynham | | | | | | | | Site | Monitoring | Valid Data
Capture for | Valid Data | NO ₂ Ar | nnual Mean | Concentra | tion (µg/m | ³) ⁽³⁾ | |---------|-------------------------|----------------|--------------------------------------|------------------------------------|--------------------|------------|-----------|------------|-------------------------------| | Site ID | Туре | Type | Monitoring Period (%) ⁽¹⁾ | Capture 2015
(%) ⁽²⁾ | 2011 | 2012 | 2013 | 2014 | 2015 | | SW22 | Roadside | Diffusion Tube | 92 | 92 | 59.6 | 51.7 | 50.8 | 52.9 | 47.7 | | SW27 | Roadside | Diffusion Tube | 100 | 100 | 27.8 | 25.2 | 25 | 23.3 | 22.4 | | SW28 | Roadside | Diffusion Tube | 92 | 92 | 56.7 | 53.9 | 47.5 | 47.4 | 49.4 | | SW29 | Roadside | Diffusion Tube | 100 | 100 | 55.1 | 52.8 | 42.3 | 50.7 | 48.6 | | SW30 | Roadside | Diffusion Tube | 100 | 100 | 40.4 | 36.4 | 33.3 | 34.3 | 33.4 | | SW31 | Roadside | Diffusion Tube | 100 | 100 | 46.5 | 47.5 | 45.1 | 42.7 | 45.2 | | SW32 | Roadside | Diffusion Tube | 100 | 100 | 45.9 | 45.5 | 41.5 | 43.6 | 40.2 | | SW34 | Urban
Backgroun
d | Diffusion Tube | 83 | 83 | 14.9 | 13.1 | 11.9 | 10 | 10.2 | | SW79 | Roadside | Diffusion Tube | 100 | 100 | 20.9 | 20.2 | 32.8 | 17.1 | 16.7 | | SW80 | Roadside | Diffusion Tube | 92 | 92 | 45 | 45.2 | 39.1a | 41.6 | 38.9 | | SW91 | Roadside | Diffusion Tube | 92 | 92 | - | - | 41.3a | 38.5a | 36.4 | | SW92 | Roadside | Diffusion Tube | 50 | 50 | - | - | 39.9a | - | 37.3a | | SW93 | Roadside | Diffusion Tube | 67 | 67 | - | - | 15.3a | 17.6 | 17.9a | | SW94 | Roadside | Diffusion Tube | 92 | 92 | _ | - | 17.9a | 16.6 | 16.4 | | SW95 | Roadside | Diffusion Tube | 67 | 67 | - | - | 70.5a | 66.3 | 70.2a | | SW96 | Roadside | Diffusion Tube | 67 | 67 | - | - | 38.8a | 44.1 | 47.0a | | SW98 | Roadside | Diffusion Tube | 100 | 100 | | | | 27.6 a | 33.2 | | | | | Si | ttingbourne | | | | | | | SW53 | Roadside | Diffusion Tube | 100 | 100 | 38.8 | 41 | 33.6 | 34.5 | 33.9 | | SW56 | Roadside | Diffusion Tube | 100 | 100 | 46.5 | 39.8 | 42.8 | 42.5 | 38.7 | | SW58 | Roadside | Diffusion Tube | 100 | 100 | 36.8 | 31.1 | 28.6a | 39.8 | 33.5 | | SW62 | Roadside | Diffusion Tube | 100 | 100 | 46.5 | 47.5 | 39.9 | 37.1 | 37.2 | | SW74 | Roadside | Diffusion Tube | 100 | 100 | 29.5 | 29.2 | 28.1 | 23.8 | 23.9 | | SW75 | Roadside | Diffusion Tube | 100 | 100 | 26.7 | 26.9 | 24.6a | 22.4 | 21.0 | | SW76 | Roadside | Diffusion Tube | 92 | 92 | 37.9 | 40.7 | 33.8 | 30.7 | 31.6 | | SW77 | Urban
Backgroun
d | Diffusion Tube | 83 | 83 | 32.3 | 31.3 | 34.5 | 30.9 | 29.7 | | SW83 | Roadside | Diffusion Tube | 100 | 100 | 34.7 | 33.6 | 33.3 | 28.4 | 29.1 | | | Site | Monitoring | Valid Data | Valid Data | NO ₂ A | nnual Mean | Concentra | ntion (µg/m | ³) ⁽³⁾ | |---------|-------------------------|----------------|--|------------------------------------|-------------------|------------|-----------|-------------|-------------------------------| | Site ID | Type | Туре | Capture for
Monitoring
Period (%) ⁽¹⁾ | Capture 2015
(%) ⁽²⁾ | 2011 | 2012 | 2013 | 2014 | 2015 | | SW87 | Roadside | Diffusion Tube | 100 | 100 | - | 36 | 33.2 | 31.7a | 33.8 | | SW88 | Urban
Backgroun
d | Diffusion Tube | 92 | 92 | - | 27.2 | 24.3a | 22.3a | 19.5 | | SW90 | Roadside | Diffusion Tube | 83 | 83 | - | - | 31.6 | 29.1a | 30.7 | | SW97 | Roadside | Diffusion Tube | 67 | 67 | - | - | 31.6a | 27.9a | 28.7a | | | | | | Milton | | | | | | | SW39 | Roadside | Diffusion Tube | | | 36.1 | 31.9 | 38.1 | 27.1 | 26.9 | | SW51 | Roadside | Diffusion Tube | | | 46.3 | 42.2 | 43.7 | 38.1 | 40.5 | | SW52 | Roadside | Diffusion Tube | | | 41.5 | 41.7 | 30.4 | 33.3 | 35.2 | | SW65 | Roadside | Diffusion Tube | | | - | 30.9 | 27.1 | 26.5 | 27.3 | | SW70 | Roadside | Diffusion Tube | | | 29.7 | 30.8 | 29.6a | 27.8 | 26.8 | | SW71 | Roadside | Diffusion Tube | | | 35.3 | 37 | 31.3 | 32.5 | 32.7 | | SW72 | Roadside | Diffusion Tube | | | 37.2 | 32.7 | 32.5 | 26.6 | 25.8 | | SW73 | Roadside | Diffusion Tube | | | 31.6 | 37.2 | 35.9 | 32.4 | 31.1 | | SW82 | Roadside | Diffusion Tube | | | 68.2 | 62.3 | 56.4 | 57.4 | 55.5 | | SW89 | Kerbside | Diffusion Tube | | | - | - | 44 | 40.3 | 41.8 | Notes: Exceedances of the NO₂ annual mean objective of 40µg/m³ are shown in **bold**. NO₂ annual means exceeding 60µg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**. - (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). - (3) Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per Technical Guidance LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details. Table A.4 – 1-Hour Mean NO₂ Monitoring Results | | | | Valid Data
Capture for | Valid Data | N | IO₂ 1-Hoι | ır Means > : | 200μg/m³ ⁽³⁾ | | |------------------------------------|-----------|-----------------|---|----------------------|---------|-----------|--------------|-------------------------|---------| | Site ID | Site Type | Monitoring Type | Monitoring
Period (%) ⁽¹⁾ | Capture 2015 (%) (2) | 2011 | 2012 | 2013 | 2014 | 2015 | | ZW6
Newington
(3) | Roadside | Chemilumesence | 97.8 | 97.8 | 0 | 0 | 1 | 1 | 0 | | ZW3
Ospringe
Roadside
(2) | Roadside | Chemilumesence | 95.2 | 95.2 | 0 | 0 | 0 | 0 (121.2) | 0 | | ZW7
Canterbury
Road | Roadside | Chemilumesence | 98.6 | 98.6 | 0 (107) | 0 | 7 (175.7) | 2 (136.6) | 0 (107) | | ZW8 St
Paul's
Street | Roadside | Chemilumesence | 87.6 | 87.6 | - | - | 0 | 0 | 1 (120) | Notes: Exceedances of the NO₂ 1-hour mean objective (200µg/m³ not to be exceeded more than 18 times/year) are shown in **bold.** - (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). - (3) If the period of valid data is less than 85%, the 99.8th percentile of 1-hour means is provided in brackets. Table A.5 – Annual
Mean PM₁₀ Monitoring Results | Site ID | Site Type | Valid Data
Capture for
Monitoring
Period (%) | Valid
Data
Capture
2015
(%) ⁽²⁾ | | | ean Concentrat | | 2245 | | | | |------------------------|-----------|---|--|--|--|----------------|--|------|--|--|--| | | | | | 2011 2012 2013 2014 2015 | | | | | | | | | Ospringe
Roadside 2 | Roadside | 98.2 | 98.2 | 2 29.2 26.4 29.4 27.2 28.5 | | | | | | | | Notes: Exceedances of the PM₁₀ annual mean objective of 40µg/m³ are shown in **bold**. - (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). - (3) All means have been "annualised" as per Technical Guidance LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details. Table A.6 – 24-Hour Mean PM₁₀ Monitoring Results | Site ID | Site Type | Valid Data
Capture for
Monitoring
Period (%) | Valid
Data
Capture
2015
(%) ⁽²⁾ | | PM ₁₀ 24-Ho | ur Means > 50μ | ıg/m ^{3 (3)} | | |--------------------|-----------|---|--|------|------------------------|----------------|-----------------------|------| | | | | | 2011 | 2012 | 2013 | 2014 | 2015 | | OspringeRoadside 2 | Roadside | 98.2 | 98.2 | 20 | 12 | 19 | 9 | 15 | Notes: Exceedances of the PM₁₀ 24-hour mean objective (50µg/m³ not to be exceeded more than 35 times/year) are shown in **bold**. - (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). - (3) If the period of valid data is less than 85%, the 90.4th percentile of 24-hour means is provided in brackets. # **Appendix B: Full Monthly Diffusion Tube Results for 2015** Table B.1 – NO₂ Monthly Diffusion Tube Results -2015 | | | | | | | NO ₂ N | lean Co | ncentr | ations (| μg/m³) | | | | | |---------|------|------|------|------|------|-------------------|---------|--------|----------|--------|------|------|-------------|------------------| | | | | | | | | | | | | | | Annua | al Mean | | Site ID | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Raw
Data | Bias
Adjusted | | SW07 | 18.0 | 18.2 | 16.3 | 11.2 | 8.1 | 7.8 | 74.5 | 12.3 | 11.7 | 11.9 | 11.9 | 9.1 | 17.6 | 14.0 | | SW11 | 35.4 | 33.6 | 32.4 | 24.7 | 25.9 | 23.3 | 23.5 | 24.2 | 29.1 | 36.6 | 36.6 | 18.8 | 28.7 | 22.9 | | SW13 | 32.3 | 35.8 | 23.9 | 23.8 | 20.8 | 15.6 | 19.8 | 19.6 | 26.0 | 28.5 | 28.5 | 20.4 | 24.6 | 19.6 | | SW14 | 35.2 | 37.4 | 30.2 | 20.6 | 19.2 | 16.5 | 20.1 | 20.4 | 26.8 | 29.9 | 29.9 | 22.6 | 25.7 | 20.5 | | SW84 | 41.6 | 42.7 | | 26.8 | 25.9 | 22.9 | 24.4 | 31.3 | 30.1 | 35.9 | 35.9 | 29.4 | 31.5 | 25.2 | | SW85 | 39.9 | 36.7 | 39.0 | 30.8 | 24.7 | | 31.3 | 34.6 | 39.5 | 36.3 | 36.3 | | 34.9 | 27.9 | | SW86 | 42.3 | 44.7 | 32.6 | 34.0 | 25.2 | | 26.1 | | 37.1 | 48.6 | 48.6 | | 37.7 | 30.1 | | SW19 | 45.6 | 38.9 | 43.4 | | | 28.9 | 31.1 | 30.0 | 35.4 | 47.2 | 47.2 | 22.7 | 37.0 | 29.6 | | SW20 | 46.6 | 50.0 | 43.5 | 36.1 | 28.8 | | 32.7 | 37.4 | 38.7 | 44.9 | 44.9 | 26.9 | 39.1 | 31.2 | | SW35 | 65.1 | 62.8 | 60.7 | 52.7 | 50.1 | 46.0 | 61.3 | 56.0 | 52.0 | 54.2 | 54.2 | 49.1 | 55.4 | 44.2 | | SW36 | 50.7 | 48.1 | 48.1 | 35.9 | 28.2 | 27.8 | | 33.9 | 43.7 | 53.3 | 53.3 | | 42.3 | 33.8 | | SW37 | 24.7 | 50.0 | 48.5 | 43.1 | 23.0 | 26.0 | 33.7 | 43.3 | 46.4 | 50.8 | 50.8 | 31.9 | 39.4 | 31.4 | | SW38 | 47.4 | 52.3 | 45.9 | 39.1 | 31.0 | 27.8 | | | 45.1 | | | | 41.2 | 31.4a | | SW42 | 65.7 | 68.1 | 57.8 | 62.9 | | 50.6 | 55.3 | 60.1 | 58.9 | 60.7 | 60.7 | 51.0 | 59.3 | 47.3 | | SW45 | 62.7 | 59.2 | 49.9 | 47.5 | 50.2 | | 30.8 | 48.1 | 55.1 | | | 43.4 | 49.7 | 39.6 | | SW66 | 56.6 | 44.9 | 44.3 | 46.4 | 42.9 | 38.1 | | 45.0 | 47.9 | 44.8 | 44.8 | 42.6 | 45.3 | 36.2 | | SW78 | 46.1 | 46.7 | 57.2 | 52.4 | | 34.6 | 35.3 | | 51.5 | 56.8 | 56.8 | | 48.6 | 38.8 | | SW22 | 70.3 | 69.2 | 63.7 | 61.1 | 59.7 | 62.3 | 31.4 | 66.6 | | 60.7 | 60.7 | 51.5 | 59.7 | 47.7 | | SW27 | 34.8 | 34.2 | 31.2 | 23.2 | 21.2 | 20.1 | 24.4 | 29.7 | 32.1 | 32.6 | 32.6 | 20.4 | 28.0 | 22.4 | | SW28 | 64.6 | 64.3 | 54.9 | 63.0 | 59.7 | 55.2 | 57.4 | 71.6 | 68.3 | 61.0 | 61.0 | | 61.9 | 49.4 | | | | | | | | NO ₂ N | lean Co | ncentr | ations (| μg/m³) | | | | | |---------|------|------|------|------|------|-------------------|---------|--------|----------|--------|------|------|-------------|------------------| | | | | | | | | | | | | | | Annua | al Mean | | Site ID | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Raw
Data | Bias
Adjusted | | SW29 | 55.7 | 72.5 | 57.9 | 54.7 | 52.3 | 56.6 | 66.1 | 80.8 | 66.0 | 59.0 | 59.0 | 49.7 | 60.9 | 48.6 | | SW30 | 47.2 | 50.4 | 44.2 | 39.9 | 43.3 | 35.5 | 39.2 | 43.4 | 44.4 | 43.0 | 43.0 | 28.8 | 41.9 | 33.4 | | SW31 | 61.5 | 64.5 | 57.2 | 57.8 | 44.5 | 45.6 | 51.5 | 65.0 | 63.5 | 67.6 | 67.6 | 32.7 | 56.6 | 45.2 | | SW32 | 56.2 | 63.1 | 52.3 | 46.7 | 43.0 | 40.5 | 53.2 | 70.8 | 47.0 | 43.0 | 43.0 | 44.7 | 50.3 | 40.2 | | SW34 | | 18.2 | 14.5 | | 9.7 | 6.8 | 10.0 | 12.3 | 12.4 | 17.3 | 17.3 | 9.4 | 12.8 | 10.2 | | SW79 | 27.5 | 27.1 | 25.2 | 19.6 | 15.0 | 15.0 | 17.4 | 18.6 | 23.3 | 24.5 | 24.5 | 13.0 | 20.9 | 16.7 | | SW80 | 68.0 | 55.3 | | 58.0 | 43.6 | 41.1 | 35.6 | 40.5 | 55.6 | 56.9 | 56.9 | 24.8 | 48.8 | 38.9 | | SW91 | 59.8 | 50.2 | 46.1 | 43.5 | 37.0 | 38.3 | 45.4 | 45.9 | | 48.0 | 48.0 | 38.9 | 45.6 | 36.4 | | SW92 | | | 48.3 | | 42.5 | 33.6 | | 43.3 | 42.3 | | | 33.2 | 40.5 | 37.3a | | SW93 | 30.3 | | | 22.1 | | 14.3 | 17.3 | | 24.8 | 27.3 | 27.3 | 13.6 | 22.1 | 17.9a | | SW94 | 27.3 | 25.8 | 27.1 | 21.3 | 17.0 | 15.1 | 14.6 | 15.5 | | 23.4 | 23.4 | 15.4 | 20.5 | 16.4 | | SW95 | 73.0 | 99.1 | 94.0 | 98.4 | 72.8 | 75.2 | 88.1 | 96.3 | | | | | 87.1 | 70.2a | | SW96 | 62.9 | | 53.2 | | 53.0 | 51.8 | 51.8 | 62.2 | 52.3 | | | 45.9 | 54.1 | 47.0a | | SW98 | 51.5 | 44.2 | 44.3 | 40.5 | 37.8 | 32.0 | 37.5 | 41.1 | 48.9 | 42.8 | 42.8 | 36.0 | 41.6 | 33.2 | | SW53 | 48.7 | 48.8 | 45.7 | 48.8 | 35.6 | 31.6 | 38.8 | 41.9 | 35.3 | 44.9 | 44.9 | 43.8 | 42.4 | 33.9 | | SW56 | 61.6 | 58.6 | 44.7 | 43.9 | 44.5 | 42.9 | 42.2 | 52.0 | 49.3 | 49.0 | 50.5 | 41.9 | 48.4 | 38.7 | | SW58 | 55.9 | 62.6 | 54.3 | 45.6 | 29.5 | 20.3 | 22.3 | 36.6 | 40.1 | 52.9 | 52.9 | 30.2 | 41.9 | 33.5 | | SW62 | 71.2 | 61.4 | 47.0 | 35.3 | 32.6 | 39.3 | 31.3 | 43.2 | 49.9 | 56.9 | 56.9 | 33.8 | 46.6 | 37.2 | | SW74 | 34.8 | 38.4 | 32.2 | 27.3 | 21.6 | 19.7 | 23.2 | 27.9 | 33.1 | 36.6 | 36.6 | 27.2 | 29.9 | 23.9 | | SW75 | 39.6 | 37.0 | 29.3 | 20.2 | 12.5 | 18.2 | 22.8 | 21.6 | 27.9 | 33.2 | 33.2 | 20.2 | 26.3 | 21.0 | | SW76 | 46.5 | 48.3 | 41.3 | 29.6 | 29.3 | 23.6 | 39.9 | 36.6 | 48.6 | 45.5 | 45.5 | | 39.5 | 31.6 | | SW77 | 49.1 | 44.5 | 48.1 | 42.0 | 26.8 | 30.8 | 29.1 | 35.7 | 44.8 | | | 20.7 | 37.2 | 29.7 | | SW83 | 41.2 | 42.4 | 40.8 | 38.4 | 30.1 | 27.4 | 29.9 | 32.8 | 37.8 | 44.0 | 44.0 | 29.3 | 36.5 | 29.1 | | SW87 | 52.5 | 51.0 | 50.9 | 40.9 | 37.2 | 32.4 | 32.0 | 38.8 | 43.3 | 50.6 | 50.9 | 28.2 | 42.4 | 33.8 | | | NO₂ Mean Concentrations (μg/m³) | | | | | | | | | | | | | | |---------|---------------------------------|------|------|------|------|------|------|------|------|------|------|------|-------------|------------------| | Site ID | | | | | | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual Mean | | | | Jan | Feb | Mar | Apr | May | | | | | | | | Raw
Data | Bias
Adjusted | | SW88 | 35.9 | 33.7 | 31.0 | 20.2 | 17.7 | 16.9 | 17.0 | 21.9 | | 26.6 | 26.6 | 20.9 | 24.4 | 19.5 | | SW90 | 50.6 | 43.4 | | 26.8 | | 24.3 | 35.8 | 36.8 | 40.2 | 43.3 | 54.1 | 29.2 | 38.5 | 30.7 | | SW97 | 43.2 | | 41.5 | 37.0 | 25.9 | 28.8 | | | | 44.9 | 42.9 | 26.7 | 36.4 | 28.7a | | SW39 | 41.3 | 40.5 | 41.8 | 28.5 | 25.8 | 24.5 | 24.6 | 31.2 | 35.5 | 42.4 | 42.4 | 26.2 | 33.7 | 26.9 | | SW51 | 58.2 | 52.5 | 57.8 | 48.4 | 35.7 | 36.7 | 36.9 | 43.1 | 56.6 | 76.3 | 76.3 | 30.0 | 50.7 | 40.5 | | SW52 | 52.5 | 46.5 | 48.8 | | | 28.4 | 26.7 | | 48.8 | 57.3 | 57.3 | 30.4 | 44.1 | 35.2 | | SW65 | 41.0 | 41.3 | 36.7 | 33.1 | 26.6 | 21.3 | | 26.8 | 33.0 | 43.9 | 43.9 | 28.0 | 34.1 | 27.3 | | SW70 | 45.9 | 42.5 | 39.5 | 25.1 | 26.8 | | 24.0 | 30.4 | 35.3 | 37.3 | 37.3 | 25.0 | 33.6 | 26.8 | | SW71 | 58.0 | 46.9 | 49.2 | 20.0 | 40.2 | 25.3 | 25.1 | 38.9 | 49.4 | 51.5 | 51.5 | 36.0 | 41.0 | 32.7 | | SW72 | 37.3 | 36.6 | 37.5 | 27.8 | 24.6 | 22.9 | 25.4 | 29.9 | 34.4 | 43.1 | 43.1 | 25.9 | 32.4 | 25.8 | | SW73 | 46.5 | 45.0 | 33.5 | 34.9 | 29.0 | 30.6 | 30.8 | 37.4 | 43.3 | 50.6 | 50.6 | 35.2 | 39.0 | 31.1 | | SW82 | 81.1 | 79.2 | 65.4 | 67.6 | 64.3 | 58.4 | 63.5 | 75.3 | 73.3 | 75.1 | 75.1 | 55.5 | 69.5 | 55.5 | | SW89 | 63.3 | 61.0 | 52.4 | 48.9 | | 35.1 | 49.2 | 50.8 | 53.3 | 57.9 | 60.0 | 44.4 | 52.4 | 41.8 | ⁽¹⁾ See Appendix C for details on bias adjustment # Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC #### **Diffusion Tube Bias Adjustment Factors** In keeping with the guidance in TG(16) a comparison is made between the national bias adjustment factor spreadsheet and the locally derived co-located studies. #### National bias adjustment factor spreadsheet. The diffusion tubes are supplied and analysed by Environmental Scientifics Group (ESG) Didcot utilising the 50% triethanolamine (TEA) in acetone preparation method. A bias adjustment of 0.79 for the year 2015 (based on 26 studies) has been derived from the national bias adjustment calculator⁹. | | National Diffusion Tub | | | | | | | | Spreadshe | | | |
--|--|-----------|--|--|----------------|---|-------------------------------|--|---|----------------|---|--| | ш | Follow the steps below in the correct or
Data only apply to tubes exposed monthly a
Whenever presenting adjusted data, you sl | and
ho | d are not suitable f
uld state the adjus | or correcting
tment factor | indiv
used | idual short-term monitoring periods
and the version of the spreadsheet | | | | | s spreadshe
dated at th
September | e end of | | | This spreadhseet will be updated every few
The LAQM Helpdesk is operated on behalf of D
partners AECOM and the National Physical Lab | Defr | a and the Devolved | | | | Spreadsh | immediate use
leet maintained
by Air Quality C | by the Nationa | al Physic | al Laborato | ory. Origina | | l | Step 1: | Т | Step 2: | Step 3: | | | | Step 4: | | | | | | Select the Laboratory that Analyses Your,
Tubes from the Drop-Down List | | | ielect a Preparation
Method from the
Drop-Down List | mithe From the with caut | | ere there is only one study for a chosen combination, you should use the adjustment factor sho
n caution. Where there is more than one study, use the overall factor ³ shown in blue at the fool
the final column. | | | | | | | | | lf a laboratory ir notrhoun, we have no data for thir
laboratory. | 200 | a proparation mothod ir
schoun, wo have no data
far thir mothod at thir
laboratory. | lf a year ir not
shown, we have no
2
data | lf yo | u have your own co-location study then see
Helpdesk at LAQN | | | | | al Air Quality | Managem | | | Analysed By ¹ | | Method | Year ⁵ | Sit
Typ | | Length
of Study
(months | Diffusion
Tube Mean
Conc. (Dm)
(µg/m³) | Automatic
Monitor
Mean
Conc. (Cm)
(µg/m³) | Bias
(B) | Tube
Precisio
n ^s | Bias
Adjustn
nt Facto
(A)
(Cm/Dn | | Н | ESG Didcot | | 0% TEA in acetone | 2015 | В | Gravesham Borough Council | 12 | 30 | 23 | 29.8% | P | 0.77 | | | ESG Didcot | | 0% TEA in acetone | 2015 | Ιŭ | | 11 | 24 | 18 | 36.5% | P | 0.73 | | п н | ESG Didcot | | 0% TEA in acetone | 2015 | B | Swale Borough Council | 12 | 41 | 33 | 24.1% | P | 0.81 | | 11 | ESG Didcot | 50 | 0% TEA in acetone | 2015 | R | Swale Borough Council | 10 | 48 | 38 | 24.2% | G | 0.81 | | | ESG Didcot | 50 | 0%TEA in acetone | 2015 | R | Swale Borough Council | 11 | 38 | 30 | 28.4% | P | 0.78 | | | ESG Didcot | 50 | 0% TEA in acetone | 2015 | R | Wrexham County Borough Council | 12 | 19 | 19 | 0.6% | G | 0.99 | | | ESG Didcot | 51 | 0%TEA in acetone | 2015 | KS | Marylebone Road Intercomparison | 12 | 104 | 81 | 27.9% | G | 0.78 | | | ESG Didcot | 51 | 0%TEA in acetone | 2015 | B | | 11 | 34 | 29 | 15.7% | G | 0.86 | | | ESG Didcot | _ | 0% TEA in acetone | 2015 | U | | 12 | 24 | 19 | 25.5% | G | 0.80 | | | ESG Didcot | - | 0%TEA in acetone | 2015 | R | | 12 | 17 | 14 | 19.4% | G | 0.84 | | п н | ESG Didcot
ESG Didcot | - | 0% TEA in acetone | 2015 | KS
SL | | 12 | 44 | 35
15 | 26.0% | P
G | 0.79 | | нь | ESG Didcot | - | 0% TEA in acetone
0% TEA in acetone | 2015 | B | | 12 | 17
27 | 23 | 17.8% | G | 0.85 | | 3 F | ESG Didcot | +- | 0% TEA in acetone | 2015 | l B | | 12 | 21 | 12 | 77.3% | G | 0.56 | | | ESG Didcot | _ | 0% TEA in acetone | 2015 | B | | 11 | 32 | 23 | 42.6% | G | 0.70 | | | ESG Didcot | +- | 0% TEA in acetone | 2015 | B | | 10 | 34 | 28 | 21.2% | P | 0.83 | | н н | ESG Didcot | | 0% TEA in acetone | 2015 | B | | 11 | 39 | 28 | 38.6% | G | 0.72 | | 1 | ESG Didcot | 50 | 0%TEA in acetone | 2015 | R | North East Lincolnshire Council | 11 | 55 | 47 | 16.2% | G | 0.86 | | l | ESG Didcot | 50 | 0%TEA in acetone | 2015 | B | Hambleton District Council | 10 | 22 | 19 | 17.6% | G | 0.85 | | | ESG Didcot | 50 | 0%TEA in acetone | 2015 | UE | City of York Council | 11 | 24 | 16 | 50.6% | G | 0.66 | | П | ESG Didcot | | 0%TEA in acetone | 2015 | R | City of York Council | 11 | 36 | 27 | 31.9% | G | 0.76 | | | ESG Didcot | 150 | 0% TEA in acetone | 2015 | B | City of York Council | 11 | 34 | 25 | 34.8% | G | 0.74 | | I | | | | | _ | | | | | | | | | | ESG Didcot ESG Didcot | 51 | 0% TEA in acetone
0% TEA in acetone | 2015 | R | _ · · | 12 | 39
23 | 28
21 | 41.1%
10.6% | G | 0.71 | Spreadsheet can be downloaded from the link: http://laqm.defra.gov.uk/bias-adjustment-factors/national-bias.html #### **Factor from Local Co-location studies** There are four co-location studies in Swale Borough Council. The spreadsheet tool¹⁰ developed to support local authorities calculate bias was used to assess the bias for each co-location study. Screen shots showing the diffusion tube concentrations, associated concentrations measured by the automatic analyser and the derived A and B bias factors are shown in the following screen prints. Table C.1 summarises the required bias information (using the information shown in the respective blue boxes). Table C.1: A summary of bias factors and annual averages derived from colocated spreadsheets | · | Periods | Bias A | Bias B | NO ₂ concentration measured by | | | | |--------------------------|-----------------|--------|--------|---|---|--|--| | Co-located sampling site | of data
used | factor | factor | Diffusion
tube,
µg m ⁻³ | Continuous
analyser, µg
m ⁻³ | | | | Newington 3 (SW20) | 8 | 0.79 | 0.26 | 37 | 29 | | | | Ospringe Road (SW30) | 11 | 0.79 | 0.27 | 42 | 33 | | | | Canterbury Road (SW87) | 7 | 0.91 | 0.1 | 43 | 39 | | | | St Paul Street (SW89) | 9 | 0.73 | 0.38 | 53 | 38 | | | Following the guidance in TG(16) a reasonable approximation for the combined bias can be obtained by adding the average of the Bias B factors (0.2525) adding to 1.0 and then taking the inverse. This resulted in a bias factor of 0.80. This value is slightly higher than the value derived from the national adjustment spreadsheet (0.79) and hence presents a more conservative approach. Newington (SW20) ¹⁰ http://laqm.defra.gov.uk/documents/AEA_DifTPAB_v04.xls #### Ospringe Roadside (SW30) #### Canterbury Road (SW87) #### St Paul's Street (SW89) ## **Appendix D: Map(s) of Monitoring Locations** Figure D1: Location of automatic analysers in Swale Borough Council Figure D2: Location of NO₂ diffusion tubes in Swale Borough Council Figure D3: Location NO₂ diffusion tubes in Sheerness Figure D4: Location NO₂ diffusion tubes in Newington (AQMA 1) Figure D5: Location NO₂ diffusion tubes in Teynham. Area contains AQMA 5. Figure D6: Location NO₂ diffusion tubes in Faversham. Area contains AQMA 2. Figure D7: Location NO₂ diffusion tubes in Faversham. Not in AQMA Figure D8: Location NO₂ diffusion tubes in Sittingbourne. This map shows location of the automatic analyser in St Paul's Street (within AQMA 4) and the automatic analyser at Canterbury Road within AQMA 3. Figure D9: Location NO₂ diffusion tubes in St Paul's Street, Milton, Sittingbourne. This area contains the St Paul's Street AQMA (AQMA 4). # **Appendix E: Summary of Air Quality Objectives in England** Table E.1 – Air Quality Objectives in England | Pollutant | Air Quality Objective ¹¹ | | | | | | | | |------------------------------------|---|----------------|--|--|--|--|--|--| | Pollutant | Concentration | Measured as | | | | | | | | Nitrogen Dioxide | 200 µg/m³ not to be exceeded more than 18 times a year | 1-hour mean | | | | | | | | (NO ₂) | 40 μg/m ³ | Annual mean | | | | | | | | Particulate Matter | 50 μg/m³, not to be exceeded more than 35 times a year | 24-hour mean | | | | | | | | (PM ₁₀) | 40 μg/m ³ | Annual mean | | | | | | | | | 350 µg/m³, not to be exceeded more than 24 times a year | 1-hour mean | | | | | | | | Sulphur Dioxide (SO ₂) | 125 µg/m³, not to be exceeded more than 3 times a year | 24-hour mean | | | | | | | | | 266 µg/m³, not to be exceeded more than 35 times a year | 15-minute mean | | | | | | | $^{^{11}}$ The units are in microgrammes of pollutant per cubic metre of air ($\mu g/m^3$). # **Glossary of Terms** | Abbreviation | Description | | | | | |-------------------|---|--|--|--|--| | AQAP | Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values' | | | | | | AQMA | Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quali objectives. AQMAs are declared for specific pollutants and objectives | | | | | | ASR | Air quality Annual Status Report | | | | | | Defra | Department for Environment, Food and Rural Affairs | | | | | | DMRB | Design Manual for Roads and Bridges – Air quality screening tool produced by Highways England | | | | | | EU | European Union | | | | | | FDMS | Filter Dynamics Measurement System | | | | | | LAQM |
Local Air Quality Management | | | | | | NO ₂ | Nitrogen Dioxide | | | | | | NO _x | Nitrogen Oxides | | | | | | PM ₁₀ | Airborne particulate matter with an aerodynamic diameter of 10µm (micrometres or microns) or less | | | | | | PM _{2.5} | Airborne particulate matter with an aerodynamic diameter of 2.5µm or less | | | | | | QA/QC | Quality Assurance and Quality Control | | | | | | SO ₂ | Sulphur Dioxide | | | | | | | | | | | |